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Abstract

Consider the semilinear nonautonomous equation ∂
∂tu(t) = k(t)∆αu(t) +u1+β(t)

with u (0, x) = λϕ (x), x ∈ Rd, where ∆α := −(−∆)α/2, 0 < α ≤ 2, λ, β > 0
are constants, ϕ ≥ 0 is bounded, continuous and does not identically vanish, and k :
[0,∞) → [0,∞) is a locally integrable function satisfying ε1t

ρ ≤ ∫ t

0
k (r) dr ≤ ε2t

ρ for all
t large enough, where ε1, ε2, ρ > 0 are given constants. We prove that any constellation
of positive parameters d, α, ρ, β, obeying 0 < dρβ/α < 1, yields finite time blow up of
any nontrivial positive solution. Under suitable additional assumptions, we also obtain
upper and lower bounds for the life span Tλϕ of the above equation, which prove that
Tλϕ ∼ λ−

αβ
α−dρβ near zero.

Key words: Semilinear partial differential equations, non-autonomous Cauchy problem, Feynman-

Kac representation, critical exponent, finite time blow-up, nonglobal solution, life span.
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1 Introduction

We consider positive solutions of the semilinear non-autonomous Cauchy problem

∂u(t, x)
∂t

= k(t)∆αu(t, x) + u1+β(t, x), u(0, x) = ϕ(x) ≥ 0, x ∈ Rd, (1.1)

where ∆α := −(−∆)α/2 denotes the fractional power of the Laplacian, 0 < α ≤ 2, β ∈ (0,∞)
is a constant, and k : [0,∞) → [0,∞) is a locally integrable function satisfying

ε1t
ρ ≤

∫ t

0
k (r) dr ≤ ε2t

ρ (1.2)

for all t large enough, where ε1, ε2 and ρ are given positive constants. Solutions will be
understood in the mild sense, so that (1.1) is meaningful for any bounded measurable initial
value.

Recall that there exists a number Tϕ ∈ (0,∞] such that (1.1) has a unique solution u

on [0, Tϕ)× Rd, which is given by

u (t, x) = U(t, 0)ϕ(x) +
∫ t

0

(
U(t, s)u1+β (s, ·)

)
(x) ds, (1.3)
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and is bounded on [0, T ]×Rd for any 0 < T < Tϕ. Moreover, if Tϕ < ∞, then ‖u(t, ·)‖∞ →
∞ as t ↑ Tϕ. Here {U(t, s), 0 ≤ s ≤ t} denotes the evolution system corresponding to the
family of generators {k(t)∆α, t ≥ 0}. When Tϕ = ∞ we say that u is a global solution, and
when Tϕ < ∞ we say that u blows up in finite time or that u is nonglobal. The extended
real number Tϕ is termed life span of Eq. (1.1).

In this paper we continue the investigation initiated in our previous article [11], to which
we refer for motivations and additional references. In [11] we proved that d > α

ρβ implies
existence of non-trivial global solutions of (1.1) for all sufficiently small initial values, and
that, under the additional assumption β ∈ {2, 3, . . . , }, the condition d < α

ρβ yields finite
time blowup of any positive solution. Moreover, the case ρ = 0, which under condition (1.2)
corresponds to an integrable k, yields finite time blow up of (1.1) for any non-trivial initial
value, regardless of the spatial dimension and the stability exponent α. Here we consider
the case d < α

ρβ with β ∈ (0,∞), and focus on the asymptotic behavior of the life span of
(1.1) when the initial value is of the form λϕ, where λ > 0 is a parameter.

The life span asymptotics are an aspect of semilinear parabolic Cauchy problems which
give insight about how the “size” of the initial value affects the blowup time of their positive
solutions; see [6], [7], [9], [10], [13], [14] and the references therein. Given two functions
f, g : [0,∞) → [0,∞), let us say that f ∼ g near c ∈ {0,∞} if there exist two positive
constants C1, C2 such that C1f(r) ≥ g(r) ≥ C2f(r) for all r which are sufficiently close
to c. In [10] it was proved, initially for k(t) ≡ 1 and α = 2, that Tλϕ ∼ λ−β near ∞
provided ϕ ≥ 0 is bounded, continuous and does not identically vanish. Later on, Gui
and Wang [6] showed that, in fact, limλ→∞ Tλϕ · λβ = β−1‖ϕ‖−β

L∞(Rd)
. The behavior of

Tλϕ as λ approaches 0 was also investigated in [10], turning out that Tλϕ ∼ λ−β near
0. Notice that these asymptotics are similar to those of the ordinary differential equation
df(t)/dt = f1+β(t), f(0) = λϕ, where ϕ > 0.

In the present paper we obtain upper and lower bounds for the life span Tλϕ of (1.1),
and provide in this way a description of the behavior of Tλϕ as λ →∞ and λ → 0. Here is
a brief outline.

We start by proving that any constellation of positive parameters d, α, ρ, β, obeying
0 < dρβ/α < 1, yields finite time blow up of any nontrivial positive solution of (1.1). This
is carried out by bounding from below the mild solution of (1.1) by a subsolution which
locally grows to ∞. Finite-time blowup of (1.1) is then inferred from a classical comparison
procedure that dates back to [8] (see also [2], Sect. 3). The construction of our subsolution
uses the Feynman-Kac representation of (1.1), and requires to control the decay of the
bridge probabilities of W ≡ {W (t), t ≥ 0}, where W is the Rd-valued Markov process
corresponding to the evolution system {U(t, s), t ≥ s ≥ 0}; see [2], [3] and [12] for the
time-homogeneous case.

A further consequence of the Feynman-Kac representation of (1.1) is the inequality
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Tλϕ ≤ Const.λ−
αβ

α−dρβ , which holds for small positive λ when 0 < dρβ/α < 1. Together with
the lower bound of Tλϕ given in Section 6, this implies (under the condition 0 < dρβ/α < 1)
that

Tλϕ ∼ λ
− αβ

α−dρβ

near 0. Finally, we also provide an upper bound for Tλϕ which is valid for all λ > 0, namely

Tλϕ ≤
(

Cλ−β +
[
(10ε2/ε1)

1
ρ θ

]α−dρβ
α

) α
α−dρβ

+ η, (1.4)

where C, θ and η are suitable positive constants. Notice that, even if λ > 0 is large, for small
positive ρ the upper bound in (1.4) is big; in fact, it grows to ∞ as ρ → 0. An intuitive
explanation of this behavior is as follows. Consider the representative case k(t) = ρ/t1−ρ,
t > 0, which corresponds to ε1 = ε2 = 1. No matter how big is λ, if ρ > 0 is sufficiently
close to 0, then, near t = 0, the mobility of the motion process {W (t), t ≥ 0} is so big that
it smears out the initial value λϕ. Hence the growth of the upper bound in (1.4).

We remark that our bridge and semigroup bounds (see Section 3) seem to be not sharp
enough to yield, using our present methods, a subsolution of (1.1) growing uniformly on a
ball for the parameter configuration dβρ/α = 1. Therefore, the blowup behavior and life
span asymptotics of (1.1) under such configuration remain to be investigated.

As this paper is partly aimed at the multidisciplinary reader, in the next section we
recall some basic facts, including the Feynman-Kac representation which we prove there for
the sake of completeness. In Section 3 we obtain semigroup and bridge estimates that we
shall need in the sequel. Section 4 is devoted to prove that (1.1) does not admit nontrivial
global solutions if d < α

ρβ . In the remaining sections 5 and 6 we prove our bounds for the
life span of (1.1).

2 The Feynman-Kac representation and subsolutions

Let us denote by Z ≡ {Z(t)}t≥0 the symmetric α-stable process in Rd, whose infinitesimal
generator is ∆α, 0 < α ≤ 2. Recall that the case α = 2 corresponds to standard Brownian
motion with variance parameter 2.

For any T > 0 let us consider the initial value problem

∂v(t, x)
∂t

= k(t)∆αv(t, x) + ζ(t, x)v(t, x), 0 < t ≤ T, (2.5)

v(0, x) = ϕ(x), x ∈ Rd,

where k : [0,∞) → [0,∞) is integrable on any bounded interval, and ζ and ϕ are nonnegative
bounded continuous functions on [0, T ]×Rd and Rd, respectively. It is well known that, in
the classical setting k ≡ 1, α = 2, ζ(t, x) ≡ ζ(x), the solution of (2.5) can be expressed via
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the Feynman-Kac formula, see e.g. [4]. Here we shall prove the Feynman-Kac representation
corresponding to (2.5).

Let W ≡ {W (t)}t≥0 be the (time-inhomogeneous) càdlàg Feller process corresponding to
the family of generators {k (t)∆α}t≥0. We designate Px the distribution of {W (t) + x}t≥0,
and write Ex for the expectation with respect to Px, x ∈ Rd.

Theorem 1 Let k, ζ and ϕ be as above. Then, the solution of (2.5) admits the Feynman-
Kac representation

v (t, x) = Ex

[
ϕ (W (t)) exp

{∫ t

0
ζ (t− s,W (s)) ds

}]
, (t, x) ∈ [0, T ]× Rd. (2.6)

Proof. Our method of proof is an adaptation to our time-inhomogeneous context of
the approach used in [1]. We shall assume that 0 < α < 2; the case α = 2 can be handled
in a similar fashion.

Recall [15] that there exists a Poisson random measure N (dt, dx) on [0,∞) × Rd\ {0}
having expectation EN (dt, dx) = dt ν (dx), with

ν(dx) =
α2α−1Γ((α + d)/2)

πd/2Γ(1− α/2)‖x‖α+d
dx,

and such that the paths of Z admits the Lévy-Itô decomposition

Z (t) =
∫

|x|<1
xÑ (t, dx) +

∫

|x|≥1
xN (t, dx) , t ≥ 0, (2.7)

where N (t, dx) :=
∫ t
0 N (dt, dx), and Ñ (t, dx) is the compensated Poisson random measure

Ñ (t, B) = N (t, B)− tν (B) , t ≥ 0, B ∈ B(Rd);

here B(Rd) denotes the Borel σ-algebra in Rd. W also admits a Lévy-Itô decomposition,
with corresponding Poisson random measure k (t)N (dt, dx).

Let us write W (p−) for the limit of W from the left of p. From the integration by parts
formula we obtain

d

[
v (t− s,W (s)) exp

{∫ s

0
ζ (t− r,W (r)) dr

}]

= v
(
t− s,W

(
s−

))
ζ

(
t− s,W

(
s−

))
exp

{∫ s

0
ζ

(
t− r,W

(
r−

))
dr

}
ds

+exp
{∫ s

0
ζ

(
t− r,W

(
r−

))
dr

}
dv (t− s,W (s)) .
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Using Itô’s formula to calculate dv (t− s,W (s)) yields

d

[
v (t− s,W (s)) exp

{∫ s

0
ζ (t− r,W (r)) dr

}]

= exp
{∫ s

0
ζ

(
t− r,W

(
r−

))
dr

}{
v

(
t− s,W

(
s−

))
ζ

(
t− s,W

(
s−

))
ds− d

ds
v

(
t− s,W

(
s−

))

+k (s)
∫

|x|<1

[
v

(
t− s,W

(
s−

)
+ x

)− v
(
t− s,W

(
s−

))]
Ñ (ds, dx)

+k (s)
∫

|x|≥1

[
v

(
t− s,W

(
s−

)
+ x

)− v
(
t− s,W

(
s−

))]
N (ds, dx)

+ k (s)
∫

|x|<1

[
v

(
t− s,W

(
s−

)
+ x

)− v
(
t− s,W

(
s−

))−
∑

i

xi
d

dxi
v

(
t− s,W

(
s−

))
]

ν (dx) ds

}
.

Integrating from 0 to t, and taking expectation with respect to Px, we obtain

Ex

[
ϕ (W (t)) exp

{∫ t

0
ζ (t− s,W (s)) ds

}]
− v (t, x)

= Ex

∫ t

0
exp

{∫ s

0
ζ

(
t− r,W

(
r−

))
dr

}{
v

(
t− s,W

(
s−

))
ζ

(
t− s,W

(
s−

))− d

ds
v

(
t− s,W

(
s−

))

+k (s)
∫

|x|<1

[
v

(
t− s,W

(
s−

)
+ x

)− v
(
t− s,W

(
s−

))−
∑

i

xi
d

dxi
v

(
t− s, W

(
s−

))
]

ν (dx)

+ k (s)
∫

|x|≥1

[
v

(
t− s, W

(
s−

)
+ x

)− v
(
t− s,W

(
s−

))]
ν (dx)

}
ds

= 0,

where in the first equality we used Ñ (ds, dx) = N (ds, dx) − ds ν (dx) , and the fact that
the stochastic integrals with respect to Ñ (ds, dx) are martingales, and therefore have ex-
pectation 0.

The Feynman-Kac representation is suitable to construct subsolutions of reaction-diffusion
equations of the prototype

∂w (t, y)
∂t

= k(t)∆αw (t, y) + w1+β (t, y) , w(0, y) = ϕ(y), y ∈ Rd, (2.8)

where β > 0 is a constant, and k, ϕ are as in (2.5). From Theorem 1 we know that

w(t, y) = Ey

[
ϕ(W (t)) exp

∫ t

0
wβ (t− s,W (s)) ds

]
, (t, y) ∈ [0, T ]× Rd,

for some T ≥ 0. Hence, for every y ∈ Rd,

w(t, y) ≥ Ey [ϕ(W (t))] =: v0(t, y), t ≥ 0,

so that v0 is a subsolution of (2.8), i.e. w (0, ·) = v0(0, ·) and w (t, ·) ≥ v0(t, ·) for every t > 0.
A direct consequence of the Feynman-Kac representation is the next lemma, which we will
need in the following section.
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Lemma 2 Let k, ϕ be as in (2.5), and let ζ (·, ·) be a subsolution of (2.8). Then, any
solution of

∂v (t, y)
∂t

= ∆αv(t, y) + ζβ(t, y)v(t, y), v (0, ·) = ϕ,

remains a subsolution of (2.8).

3 Bridge and semigroup bounds

Let us denote by p (t, x) , t ≥ 0, x ∈ Rd, the transition densities of the d-dimensional
symmetric α-stable process {Z (t)}t≥0 . Recall that p(t, ·), t > 0, are strictly positive, radially
symmetric continuous functions that satisfy the following properties.

Lemma 3 For any s, t > 0, and x, y ∈ Rd, p (t, x) satisfies
i) p (ts, x) = t−

d
α p

(
s, t−

1
α x

)
,

ii) p (t, x) ≤ p (t, y) when |x| ≥ |y| ,
iii) p (t, x) ≥ (

s
t

) d
α p (s, x) for t ≥ s,

iv) p
(
t, 1

τ (x− y)
) ≥ p (t, x) p (t, y) if p (t, 0) ≤ 1 and τ ≥ 2.

Proof. See [5] or [16].

Let ϕ : Rd → [0,∞) be bounded and measurable, and let k : [0,∞) → [0,∞) be locally
integrable. Notice that the transition probabilities of the Markov process {W (t), t ≥ 0}
are given by

P (W (t) ∈ dy|W (s) = x) = p
(∫ t

s k(r) dr, y − x
)

dy, 0 ≤ s ≤ t, x ∈ Rd.

We define the function

v0 (t, x) = Ex [ϕ (W (t))] = Ex [ϕ (Z (K(t, 0)))] =
∫

p(K(t, 0), y−x)ϕ(y) dy, t ≥ 0, x ∈ Rd,

(3.9)
where K (t, s) :=

∫ t
s k (r) dr, 0 ≤ s ≤ t, and write B(r) ≡ Br ⊂ Rd for the ball of radius

r, centered at the origin.

Lemma 4 There exists a constant c0 > 0 satisfying

v0 (t, x) ≥ c0K
− d

α (t, 0) 1B1

(
K− 1

α (t, 0)x
)

(3.10)

for all x ∈ Rd, and all t > 0 such that K
1
α (t, 0) ≥ 1.

Proof. From Lemma 3 i), ii) and radial symmetry of p (t, ·) we have, for K
1
α (t, 0) ≥ 1,
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x ∈ B
K

1
α (t,0)

and z ∈ ∂B2, that

v0 (t, x) = E0 [ϕ (Z (K (t, 0)) + x)]

= E0

[
ϕ

(
K

1
α (t, 0) (Z (1) + K− 1

α (t, 0)x)
)]

≥
∫

B1

ϕ
(
K

1
α (t, 0) y

)
P

[
Z (1) ∈ dy −K− 1

α (t, 0)x
]

=
∫

B1

ϕ
(
K

1
α (t, 0) y

)
p

(
1, y −K− 1

α (t, 0)x
)

dy

≥ p (1, z)
∫

B1

ϕ
(
K

1
α (t, 0) y

)
dy

= p (1, z) K− d
α (t, 0)

∫

B
K

1
α (t,0)

ϕ (y) dy

≥ p (1, z) K− d
α (t, 0) 1B1

(
K− 1

α (t, 0)x
)∫

B1

ϕ (y) dy.

Letting c0 = p (1, z)
∫
B1

ϕ (y) dy yields (3.10).

Fix θ > 0 such that (1.2) holds for all t ≥ θ and such that K
1
α (θ, 0) ≥ 1. Define

δ0 = min
{(

ε1
2ε2

) 1
ρ

, 1−
(

ε1
2ε2

) 1
ρ

}
.

Lemma 5 There exists c > 0 such that for all x, y ∈ B1 and t large enough,

Px

[
W (s) ∈ B

K
1
α (t−s,0)

| W (t) = y
]
≥ c

for s ∈ [θ, δ0t] .

Proof. Using (1.2) and Lemma 3 i) we get

Px

[
W (s) ∈ B

K
1
α (t−s,0)

| W (t) = y
]

=
∫

B
K

1
α (t−s,0)

p (K (s, 0) , x− z) p (K (t, s) , z − y)
p (K (t, 0) , x− y)

dz

≥
∫

B
rs

ρ
α

K− d
α (s, 0) p

(
1,K− 1

α (s, 0) (x− z)
)

K− d
α (t, s) p

(
1,K− 1

α (t, s) (z − y)
)

K− d
α (t, 0) p

(
1,K− 1

α (t, 0) (x− y)
) dz,

(3.11)

with r = ε
1
α
1

(
1
δ0
− 1

) ρ
α

. It is straightforward to verify that K− 1
α (s, 0) (x− z) ∈ Br1 , where

r1 = 2
(

ε2
ε1

) 1
α

δ
ρ
α with δ = max

{
1, 1

δ0
− 1

}
, hence Lemma 3 ii) and radial symmetry of

p (t, ·) imply
p

(
1, K− 1

α (s, 0) (x, z)
)
≥ p (1, ς) ≡ c1

for any ς ∈ ∂Br1 .
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Thus, the term in the right-hand side of (3.11) is bounded from below by

∫

B
rs

ρ
α

c1K
− d

α (s, 0)K− d
α (t, s) p

(
1,K− 1

α (t, s) (z − y)
)

K− d
α (t, 0) p

(
1,K− 1

α (t, 0) (x− y)
) dz.

Using (1.2), and the facts that K (t, 0) ≥ K (t, s) and p (t, x) ≤ p (t, 0) for all t > 0 and
x ∈ Rd, it follows that

Px

[
W (s) ∈ B

K
1
α (t−s,0)

| W (t) = y
]
≥

∫

B
rs

ρ
α

c2s
− dρ

α p
(
1, K− 1

α (t, s) (z − y)
)

dz, (3.12)

where c2 = c1ε
− d

α
2

p(1,0) . Since θ ≤ s ≤ δ0t, we have from (1.2) and the definition of δ0 that

K− 1
α (t, s) = [K (t, 0)−K (s, 0)]−

1
α ≤ (ε1t

ρ − ε2δ
ρ
0tρ)−

1
α ≤ c3t

− ρ
α ,

where c3 =
(

2
ε1

) 1
α

. Since y ∈ B1, z ∈ B
rs

ρ
α

and θ ≤ s ≤ δ0t, we deduce that, for t ≥ 1,

y ∈ B
t

ρ
α

and z ∈ B
rδ

ρ
α
0 t

ρ
α
. Letting γ = max

{
1, rδ

ρ
α
0

}
, it follows that z − y ∈ B

2γt
ρ
α
, and

thus K− 1
α (t, s) (z − y) ∈ B2γc3 . Therefore,

p
(
1,K− 1

α (t, s) (z − y)
)
≥ p (1, ς) ≡ c4

for any ς ∈ ∂B2γc3 . From (3.12) we conclude that

Px

[
W (s) ∈ B

K
1
α (t−s,0)

| W (t) = y
]
≥

∫

B
rs

ρ
α

c5s
− dρ

α dz ≡ c.

4 Nonexistence of positive global solutions

In this section we shall use the Feynman-Kac representation to construct a subsolution of
(1.1) which grows to infinity uniformly on the unit ball. As we are going to prove afterward,
this guarantees nonexistence of nontrivial positive solutions of (1.1).

Let v solve the semilinear nonautonomous equation

∂v (t, x)
∂t

= k (t)∆αv (t, x) + vβ
0 (t, x) v (t, x) , (4.13)

v (0, x) = ϕ (x) , x ∈ Rd,

where k and ϕ are as in (1.1), and v0 is defined in (3.9). Since v0 ≤ u, where u is the
solution of (1.1), it follows from Lemma 2 that v ≤ u as well. Without loss of generality we
shall assume that ϕ does not a.s. vanish on the unit ball.
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Proposition 6 There exist c′, c′′ > 0 such that, for all x ∈ B1 and all t > 0 large enough,

v (t, x) ≥ c′t−
dρ
α exp

(
c′′t1−

dρβ
α

)
.

Proof. Let c0, c1, . . . , c8 denote suitable positive constants. From Theorem 1 we know
that

v (t, x) =
∫

Rd

ϕ (y) p (K (t, 0) , x− y) Ex

[
exp

∫ t

0
vβ
0 (t− s,W (s)) ds | W (t) = y

]
dy.

Let θ and δ0 be as in Lemma 5. For any θ ≤ s ≤ δ0t, we have t− s ≥ t− δ0t = (1− δ0) t ≥
δ0t ≥ θ, and therefore K

1
α (t− s, 0) ≥ 1. From here, using (3.10) and Jensen’s inequality,

we get

v (t, x) ≥
∫

Rd

ϕ (y) p (K (t, 0) , x− y)

· Ex

[
exp

∫ δ0t

θ
cβ
0K− dβ

α (t− s, 0) 1B
K

1
α (t−s,0)

(W (s)) ds | W (t) = y

]
dy

≥
∫

B1

ϕ (y) p (K (t, 0) , x− y)

· exp
∫ δ0t

θ
cβ
0K− dβ

α (t− s, 0)Px

[
W (s) ∈ B

K
1
α (t−s,0)

| W (t) = y
]

ds dy.

It follows from Lemma 3 and Lemma 5 that

v (t, x) ≥
∫

B1

ϕ (y) p (K (t, 0) , x− y) exp
∫ δ0t

θ
c6K

− dβ
α (t− s, 0) ds dy

=
∫

B1

ϕ (y) K− d
α (t, 0) p

(
1,K− 1

α (t, 0) (x− y)
)

dy exp
∫ δ0t

θ
c6K

− dβ
α (t− s, 0) ds.

Let x, y ∈ B1. Then K− 1
α (t, 0) (x− y) ∈ B2. Radial symmetry of p (t, ·) implies

p
(
1,K− 1

α (t, 0) (x− y)
)
≥ p (1, ς) ≡ c7

for any ς ∈ ∂B2. Therefore

v (t, x) ≥
∫

B1

c7ϕ (y) K− d
α (t, 0) dy exp

∫ δ0t

θ
c6K

− dβ
α (t− s, 0) ds. (4.14)

Let c8 = c7

∫
B1

ϕ (y) dy. Using (1.2) and the fact that K (t, 0) ≥ K (t− s, 0) , the term in
the right of (4.14) is bounded below by

c8K
− d

α (t, 0) exp
(

c6

∫ δ0t

θ
K− dβ

α (t, 0) ds

)
≥ c8ε

− d
α

2 t−
dρ
α exp

[
c6ε

− dβ
α

2

(
δ0t

1− dβρ
α − θt−

dβρ
α

)]

if t > 0 is large. It follows that

v (t, x) ≥ c′t−
dρ
α exp

(
c′′t1−

dβρ
α

)
(4.15)
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for all sufficiently large t, where c′ = c8ε
− d

α
2 exp

(
−c6θε

− dβ
α

2

)
and c′′ = c6δ0ε

− dβ
α

2 .

As a consequence of Proposition 6, if 0 < dβρ
α < 1, then inf

x∈B1

v (t, x) →∞ when t →∞.

As v is subsolution of Equation (1.1), this implies that

C (t) := inf
x∈B1

u (t, x) →∞ when t →∞. (4.16)

Now we are ready to prove that (4.16) is enough to guarantee finite-time blow up of (1.1).

Theorem 7 If 0 < dρβ
α < 1, then all nontrivial positive solutions of (1.1) are nonglobal.

Proof. Let u be the solution of (1.1), and let t0 > 0 be such that ‖u(t0, ·)‖∞ < ∞.
Then

u (t + t0, x) =
∫

Rd

p (K (t + t0, t0) , y − x) u (t0, y) dy

+
∫ t

0

∫

Rd

p (K (t + t0, s + t0) , y − x)u1+β (s + t0, y) dy ds

≥
∫

B1

p (K (t + t0, t0) , y − x) u (t0, y) dy

+
∫ t

0

∫

B1

p (K (t + t0, s + t0) , y − x) u1+β (s + t0, y) dy ds.

Therefore w (t, ·) := u (t0 + t, ·) satisfies

w (t, x) ≥ C (t0)
∫

B1

p (K (t + t0, t0) , y − x) dy

+
∫ t

0

∫

B1

p (K (t + t0, s + t0) , y − x)
(

min
z∈B1

w (s, z)
)1+β

dy ds.

Using that ct−
d
α ≤ p (t, x) for all t > 0 and all x ∈ B

t
1
α
, where c > 0 is a suitable constant,

it is easy to see that

ξ := min
x∈B1

min
0≤r≤K(t0+1,0)

Px (W (r) ∈ B1) > 0.

It follows that for all t ∈ [0, 1] ,

min
x∈B1

w (t, x) ≥ ξC (t0) + ξ

∫ t

0

(
min
z∈B1

w (s, z)
)1+β

ds.

We put w (t) ≡ min
z∈B1

w (t, z), t ≥ 0, and consider the integral equation

v (t) = ξC (t0) + ξ

∫ t

0
v1+β (s) ds,
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whose solution satisfies

vβ (t) =
[ξC (t0)]

β

1− βξ1+βCβ (t0) t
. (4.17)

Choosing t0 so big that the blow up time of v is smaller than one, renders

w (1) = min
x∈B1

w (1, x) ≥ v (1) = ∞,

wich proves blow up of u.

5 Upper estimates of the life span

In this section we obtain two upper bounds for the life span of Equation (1.1) with initial
value u(0, ·) = λϕ(·), where λ is a positive parameter. We first consider the case of small
λ > 0.

Proposition 8 If 0 < dρβ
α ≤ n

n+1 , n ∈ N , then there exists a constant Cn > 0 such that
for all sufficiently small λ > 0,

Tλϕ ≤ Cnλ
− αβ

α−dβρ .

Proof. From (4.15) and (4.16) it follows that

C(t) ≥ λc′t−
dρ
α exp

(
c′′t1−

dβρ
α

)

for all t ≥ θ
δ0

. Recall from (4.17) that v(1) = ∞ provided βξ1+βCβ (t0) = 1, that is, when

βξ1+βλβ(c′)βt
− dβρ

α
0 exp

(
βc′′t

1− dβρ
α

0

)
= 1.

Choosing θ > 0 such that in addition to conditions requiered in Lemma 5 satisfies that
θ
δ0
≥ 1, then from the inequality ex ≥ xn+1

(n+1)! and the fact that the condition 0 < dρβ
α ≤ n

n+1

implies dρβ
nα ≤ 1− dρβ

α , we have that t0 ≤ t1, where t1 is such that

1
(n + 1)!

βn+2ξ1+β(c′)β(c′′)n+1λβt
1− dβρ

α
1 = 1,

which is the same as

t1 =
[

(n + 1)!
βn+2ξ1+β(c′)β(c′′)n+1

] α
α−dβρ

λ
− αβ

α−dβρ .

Choosing

Cn =
[

(n + 1)!
βn+2ξ1+β(c′)β(c′′)n+1

] α
α−dβρ

renders t0 ≤ t1 = Cnλ
− αβ

α−dβρ . Hence Tλϕ ≤ Cnλ
− αβ

α−dβρ for all sufficiently small λ > 0.
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Let us define
υ (t) =

∫

Rd

p (K (t, 0) , x) u (t, x) dx,

where u is the solution of (1.1), and let θ > 0 be such that (1.2) holds for all t ≥ θ.

Lemma 9 If there exist τ0 ≥ θ such that υ (t) = ∞ for t ≥ τ0, then the solution to (1.1)
blows up in finite time.

Proof. Due to (1.2) and Lemma 3 i), we can assume that p (K (t, 0) , 0) ≤ 1 for all t ≥
τ0.

If τ0 ≤ ε
1
ρ

1 t and ε
1
ρ

1 t ≤ r ≤ (2ε1)
1
ρ t, we have, from the conditions on k (t) , that

τ ≡

K

(
(10ε2)

1
ρ t, r

)

K (r, 0)




1
α

=


K

(
(10ε2)

1
ρ t, 0

)
−K (r, 0)

K (r, 0)




1
α

≥

K

(
(10ε2)

1
ρ t, 0

)

K
(
(2ε1)

1
ρ t, 0

) − 1




1
α

≥
[
ε1 (10ε2) tρ

ε2 (2ε1) tρ
− 1

] 1
α

= 4
1
α ≥ 2.

Using properties i) and iv) in Lemma 3, with τ =


K

„
(10ε2)

1
ρ t,r

«

K(r,0)




1
α

, yields

p
(
K

(
(10ε2)

1
ρ t, r

)
, x− y

)

= p


K (r, 0)


K

(
(10ε2)

1
ρ t, r

)

K (r, 0)


 , x− y




=


 K (r, 0)

K
(
(10ε2)

1
ρ t, r

)



d
α

p


K (r, 0) ,


 K (r, 0)

K
(
(10ε2)

1
ρ t, r

)



1
α

(x− y)




≥

 K (r, 0)

K
(
(10ε2)

1
ρ t, r

)



d
α

p (K (r, 0) , x) p (K (r, 0) , y) .

Since υ (t) = ∞ for all t ≥ τ0, it follows that

∫

Rd

p
(
K

(
(10ε2)

1
ρ t, r

)
, x− y

)
u (r, y) dy ≥


 K (r, 0)

K
(
(10ε2)

1
ρ t, r

)



d
α

p (K (r, 0) , x) υ (r) = ∞.

The solution u (t, x) of (1.1) satisfies

u (t, x) = λ

∫

Rd

p (K (t, 0) , x− y)ϕ (y) dy +
∫ t

0

(∫

Rd

p (K (t, r) , x− y)u1+β (r, y) dy

)
dr

≥
∫ t

0

(∫

Rd

p (K (t, r) , x− y) u1+β (r, y) dy

)
dr.
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Thus,

u
(
(10ε2)

1
ρ t, x

)
≥

∫ (10ε2)
1
ρ t

0

(∫

Rd

p
(
K

(
(10ε2)

1
ρ t, r

)
, x− y

)
u1+β (r, y) dy

)
dr.

Jensen’s inequality renders

u
(
(10ε2)

1
ρ t, x

)
≥

∫ (2ε1)
1
ρ t

ε
1
ρ
1 t

(∫

Rd

p
(
K

(
(10ε2)

1
ρ t, r

)
, x− y

)
u (r, y) dy

)1+β

dr = ∞,

so that u (t, x) = ∞ for any t ≥
(
10 ε2

ε1

) 1
ρ

τ0 and x ∈ Rd.

Proposition 10 Let 0 < dρβ
α < 1. There exists a constant C > 0 depending on α, β, d,

ε1, ε2, θ, ρ and ϕ, such that

Tλϕ ≤


Cλ−β +

[(
10

ε2

ε1

) 1
ρ

θ

]α−dρβ
α





α
α−dρβ

+ η, λ > 0, (5.18)

where η is any positive real number satisfying p (K (η, 0) , 0) ≤ 1.

Proof. From Lemma 3 we obtain

p (K (η, 0) , x− y) = p

(
K (η, 0) ,

1
2

(2x− 2y)
)
≥ p (K (η, 0) , 2x) p (K (η, 0) , 2y)

= 2−dp
(
2−αK (η, 0) , x

)
p (K (η, 0) , 2y) .

Therefore

u (η, x) ≥ λ

∫

Rd

p (K (η, 0) , x− y) ϕ (y) dy

≥ 2−dλp
(
2−αK (η, 0) , x

) ∫

Rd

p (K (η, 0) , 2y) ϕ (y) dy

= λN0p
(
2−αK (η, 0) , x

)
,

where N0 = 2−d
∫
Rd p (K (η, 0) , 2y) ϕ (y) dy. Thus, for any λ > 0, t ≥ 0 and x ∈ Rd,

u (t + η, x) =
∫

Rd

p (K (t + η, η) , x− y) u (η, y) dy

+
∫ t

0

(∫

Rd

p (K (t + η, r + η) , x− y) u1+β (r + η, y) dy

)
dr

≥ λN0

∫

Rd

p (K (t + η, η) , x− y) p
(
2−αK (η, 0) , y

)
dy

+
∫ t

0

(∫

Rd

p (K (t + η, r + η) , x− y) u1+β (r + η, y) dy

)
dr

≥ λN0p
(
K (t + η, η) + 2−αK (η, 0) , x

)

+
∫ t

0

(∫

Rd

p (K (t + η, r + η) , x− y) u1+β (r + η, y) dy

)
dr

≥ w(t, x),
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where w solves the equation

w (t, x) = λN0p
(
K (t + η, η) + 2−αK (η, 0) , x

)
(5.19)

+
∫ t

0

(∫

Rd

p (K (t + η, r + η) , x− y) w1+β (r, y) dy

)
dr, t ≥ 0, x ∈ Rd.

Hence, it is enough to prove that w is non-global, and, because of Lemma 9, it suffices to
show finite time blowup of

υ (t) =
∫

Rd

p (K (t, 0) , x)w (t, x) dx, t ≥ 0.

Multiplying both sides of (5.19) by p (K (t, 0) , x) and integrating, we obtain
∫

Rd

p (K (t, 0) , x)w (t, x) dx

= λN0

∫

Rd

p
(
K (t + η, η) + 2−αK (η, 0) , x

)
p (K (t, 0) , x) dx

+
∫

Rd

∫ t

0

∫

Rd

p (K (t + η, r + η) , x− y) p (K (t, 0) , x) w1+β (r, y) dy dr dx

= λN0p
(
K (t, 0) + K (t + η, η) + 2−αK (η, 0) , 0

)

+
∫ t

0

∫

Rd

p (K (t + η, r + η) + K (t, 0) , y)w1+β (r, y) dy dr, t ≥ 0.

Therefore

υ (t) = λN0p
(
K (t, 0) + K (t + η, η) + 2−αK (η, 0) , 0

)

+
∫ t

0

∫

Rd

p (K (t + η, r + η) + K (t, 0) , y) w1+β (r, y) dy dr.

From Lemma 3 i), we have p (t, 0) ≤ p (s, 0) for all 0 < s ≤ t. Hence

υ (t) ≥ λN0p
(
2K (t + η, 0) + 2−αK (η, 0) , 0

)

+
∫ t

0

∫

Rd

p (K (t + η, r + η) + K (t, 0) , y) w1+β (r, y) dy dr.

Using now Lemma 3 iii) we have,

υ (t) ≥ λN0p
(
2K (t + η, 0) + 2−αK (η, 0) , 0

)

+
∫ t

0

(
K (r, 0)

K (t + η, r + η) + K (t, 0)

) d
α

∫

Rd

p (K (r, 0) , y) w1+β (r, y) dy dr.

Jensen’s inequality together with Lemma 3 i) gives

υ (t) ≥ λN0p
(
2K (t + η, 0) + 2−αK (η, 0) , 0

)
+

∫ t

0

(
K (r, 0)

2K (t + η, 0)

) d
α

υ1+β (r) dr

= λN0

[
2K (t + η, 0) + 2−αK (η, 0)

]− d
α p (1, 0) +

∫ t

0

(
K (r, 0)

2K (t + η, 0)

) d
α

υ1+β (r) dr.
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Let f1 (t) = K
d
α (t + η, 0) υ (t) and t ≥ θ. We have

f1 (t) ≥ λp (1, 0)N0

[
K (θ + η, 0)

2K (θ + η, 0) + 2−αK (η, 0)

] d
α

+ 2−
d
α

∫ t

θ
K− dβ

α (r, 0) f1+β
1 (r) dr,

and if N := p (1, 0)N0

[
K(θ+η,0)

2K(θ+η,0)+2−αK(η,0)

] d
α , then

f1 (t) ≥ λN + 2−
d
α

∫ t

θ
K
− dβ

α (r, 0) f1+β
1 (r) dr, t ≥ θ.

Let f2 be the solution of the integral equation

f2 (t) = λN + 2−
d
α

∫ t

θ
K
− dβ

α (r, 0) f1+β
2 (r) dr, t ≥ θ,

which satisfies

fβ
2 (t) =

(λN)β

1− β (λN)β (
1
2

) d
α H (t)

(5.20)

with

H (t) ≡
∫ t

θ
K− dβ

α (r, 0) dr.

From (1.2) and the assumption 0 < dρβ
α < 1, we get

H (t) ≥ ε
− dβ

α
2

∫ t

θ
r−

dρβ
α dr =

α

α− dρβ
ε
− dβ

α
2

[
t

α−dρβ
α − θ

α−dρβ
α

]
→∞ as t →∞.

Hence, there exist τ0 ≥ θ such that β
(

1
2

) d
α (λN)β H (τ0) = 1, and therefore,

∫ τ0
θ K

− dβ
α (r, 0) dr =

2
d
α

β N−βλ−β, which together with (1.2) gives
∫ τ0
θ (ε2r

ρ)−
dβ
α dr ≤ 2

d
α

β N−βλ−β. Hence

τ
α−dρβ

α
0 ≤ 2

d
α [α− dρβ]

αβ
N−βε

dβ
α

2 λ−β + θ
α−dρβ

α ,

or, equivalently,

τ0 ≤
{

2
d
α [α− dρβ]

αβ
N−βε

dβ
α

2 λ−β + θ
α−dρβ

α

} α
α−dρβ

. (5.21)

From (5.20), we deduce that f2 (τ0) = ∞. It follows that

K
d
α (τ0 + η, 0) υ (τ0) = f1 (τ0) ≥ f2 (τ0) = ∞ ,

wich implies (as in the proof of Lemma 9) that w (t, x) = ∞ if t ≥
(
10 ε2

ε1

) 1
ρ

τ0, and thus,

u (t, x) = ∞ provided t ≥
(
10 ε2

ε1

) 1
ρ

τ0 + η. Therefore

Tλϕ ≤
(

10
ε2

ε1

) 1
ρ

τ0 + η.

We conclude from (5.21) that there exist a positive constant C = C (α, β, d, ε1, ε2, θ, ρ, ϕ)
satisfying (5.18).
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6 A lower estimate for the life span

In order to bound from below the life span Tλϕ of the initial value problem (1.1), we need
to assume that (1.2) holds for any t ≥ 0, and that ϕ is integrable.

Let {U (t, s)}t≥s≥0 be the evolution family on Cb

(
Rd

)
generated by the family of oper-

ators {k (t)∆α}t≥0 , which is given by

U (t, s) ϕ (x) =
∫

Rd

ϕ (y) p (K (t, s) , x− y) dy = S (K (t, s))ϕ (x) ,

where {S (t)}t≥0 is the semigroup with infinitesimal generator ∆α.

Proposition 11 Let 0 < dρβ
α < 1. There exists a constant c > 0, depending on α, β, d, ε1,

ρ and ϕ, such that
Tλϕ ≥ cλ

− αβ
α−dρβ , λ > 0. (6.22)

Proof. The function

u (t, x) :=
[
λ−β − β

∫ t

0
‖U (r, 0)ϕ‖β

∞ dr

]− 1
β

U (t, 0)ϕ (x) , t ≥ 0, x ∈ Rd.

is a supersolution of (1.1). In fact u (0, ·) = λϕ (·), and

∂u (t, x)
∂t

= − 1
β

[
λ−β − β

∫ t

0
‖U (r, 0)ϕ‖β

∞ dr

]− 1
β
−1 [

−β ‖U (t, 0) ϕ‖β
∞

]
U (t, 0) ϕ (x)

+
[
λ−β − β

∫ t

0
‖U (r, 0)ϕ‖β

∞ dr

]− 1
β

k (t)∆αU (t, 0) ϕ (x) .

Since − 1
β − 1 = −β+1

β , we get

∂u (t, x)
∂t

=

{[
λ−β − β

∫ t

0
‖U (r, 0)ϕ‖β

∞ dr

]− 1
β

}β+1

‖U (t, 0)ϕ‖β
∞ U (t, 0)ϕ (x)

+k (t)∆α

[
λ−β − β

∫ t

0
‖U (r, 0) ϕ‖β

∞ dr

]− 1
β

U (t, 0)ϕ (x) .

Using the inequality

‖U (t, 0)ϕ‖β
∞ U (t, 0)ϕ (x) ≥ [U (t, 0)ϕ (x)]1+β

it follows that
∂u (t, x)

∂t
≥ k (t)∆αu (t, x) + u1+β (t, x) ,

showing that u is a supersolution of (1.1). Writing L(λ) for the life span of u, it follows
that

L(λ) ≤ Tλϕ, λ ≥ 0.
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Now,

u (t, x) =
[
λ−β − β

∫ t

0
‖U (r, 0) ϕ‖β

∞ dr

]− 1
β

U (t, 0)ϕ (x) = ∞

when λ−β = β
∫ t
0 ‖U (r, 0)ϕ‖β

∞ dr. By definition of L(λ),

β−1λ−β =
∫ L(λ)

0
‖U (r, 0)ϕ‖β

∞ dr. (6.23)

Notice that, by Lemma 3 i), ii),

U (t, 0)ϕ (x) = S (K (t, 0))ϕ (x) =
∫

Rd

ϕ (y) p (K (t, 0) , x− y) dy

≤ p (1, 0)K− d
α (t, 0) ‖ϕ‖1 , t > 0, x ∈ Rd.

Since, by assumption, (1.2) holds for any t ≥ 0, we obtain

‖U (t, 0)ϕ‖∞ ≤ p (1, 0) (ε1t
ρ)−

d
α ‖ϕ‖1 .

Inserting this inequality in (6.23) and using that 0 < dρβ
α < 1, we get

β−1λ−β ≤ (p (1, 0) ‖ϕ‖1)
β ε

− dβ
α

1

∫ L(λ)

0
r−

dρβ
α dr

=
α

α− dρβ
(p (1, 0) ‖ϕ‖1)

β ε
− dβ

α
1 L(λ)

α−dρβ
α ,

which gives

L(λ)
α−dρβ

α ≥ α− dρβ

αβ
(p (1, 0) ‖ϕ‖1)

−β ε
dβ
α

1 λ−β.

In this way we obtain the inequality

Tλϕ ≥
[
α− dρβ

αβ

] α
α−dρβ

(p (1, 0) ‖ϕ‖1)
− αβ

α−dρβ ε
dβ

α−dρβ

1 λ
− αβ

α−dρβ ,

which proves the existence of a constant c ≡ c (α, β, d, ε1, ρ, ϕ) > 0 that satisfies (6.22).

Summarizing both, upper and lower bounds for the life span of (1.1), we get the following

Theorem 12 Let 0 < dρβ
α < 1, and let Tλϕ be the life span of the nonautonomous semi-

linear equation

∂u (t, x)
∂t

= k (t)∆αu (t, x) + u1+β (t, x)

u (0, x) = λϕ (x) ≥ 0, x ∈ Rd,

where λ > 0. Then

lim
λ→0

Tλϕ = ∞ and lim
λ→∞

Tλϕ ∈
[
0,

(
10

ε2

ε1

) 1
ρ

θ + η

]
, (6.24)

where θ and η are any positive numbers such that ε1θ
ρ ≤ K (θ, 0) ≤ ε2θ

ρ and p (K (η, 0) , 0) ≤
1, respectively.
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Proof. Due to (5.18) and (6.22),

cλ
− αβ

α−dρβ ≤ Tλϕ ≤


Cλ−β +

[(
10

ε2

ε1

) 1
ρ

θ

]α−dρβ
α





α
α−dρβ

+ η,

from which (6.24) follows directly using the fact that 0 < dρβ
α < 1.
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[1] Applebaum, D. Lévy processes and stochastic calculus. Cambridge Studies in Advanced Mathematics

93. Cambridge University Press, Cambridge, 2004.
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